With wearable technology on the rise, healthcare professionals are demanding medical devices that are smaller, less intrusive and more portable without sacrificing functionality or reliability. This trend is called ”miniaturization,” and adhesive bonding is making it possible.
Design Process for Medical Devices
When designing a new medical device, the things to consider are diverse: from the right material, cost, performance properties, aesthetics and human factors to regulatory compliance and biocompatibility. Making sure that all dimensions are considered can be challenging, which can result in stagnation within the concept and design phase if product performance fails to meet specifications. Device manufacturers need to stay on top of latest available materials as well as their benefits and limitations.
To advance miniaturization in the medical sector, design engineers are incorporating new materials into device designs. For example, OEMs are substituting fabricated metals, glass and other structural materials with precision molded plastics. Why? For one, flexibility. If you manufacture single-use medical devices, or even certain reusable devices, many critical components have to bend and flex for use on or near a patient’s body. Examples of flexible components and devices include tubing, IV and drug infusion sets, catheters, oxygen and anesthesia masks and hemodialysis equipment. For such components, substrates must be pliable, elastic, and often kink-resistant.
Precision molded plastics allow for flexible design
There are many reasons plastics are in high demand. They are lightweight, rugged and can be colorful. Their inherent insulating properties mean they can withstand impact, moisture and vibration. All these features make sense for devices that undergo sterilization or disinfection and are shipped around the world for use in homecare and healthcare settings.
Plastics are also appealing as they can be molded at high speeds and produce millions of identical parts with complex geometries. High speed molding is fast and can be less expensive than alternative production processes.
In this complex scenario for medical device OEMs, adhesives become one of the few joining options possible for miniaturized and complex devices. In addition to allowing fast, automated assembly, adhesives also bond dissimilar substrates, fill gaps, distribute stress over a bond line, and deliver a hermetic seal between parts.
As said, challenges are diverse. Ask yourself: What are the performance characteristics the medical device must deliver and what materials and assembly methods will help achieve those results?
Do you have a current project, material challenge that you would need support on? Contact me.
Author Jason Spencer, Global Market Development Manager Medical Devices